Lösungen zu den Aufgaben Exponential- und Logarithmusfunktion (7.5.-10.5.)

S.260

15 a)
$$F(x) = -3e^{-x}$$

15 a)
$$F(x) = -3e^{-x}$$
 b) $F(x) = -\frac{1}{2}e^{-2x}$

c)
$$F(x) = x - e^{-x}$$

c)
$$F(x) = x - e^{-x}$$
 d) $F(x) = -\frac{2}{3}e^{1-3x}$

e)
$$F(x) = e \cdot x - 2 \cdot e^{-\frac{1}{2}}$$

f)
$$F(x) = -e^{-x}$$

g)
$$F(x) = \frac{1}{2}e^{2x}$$

h)
$$F(x) = \frac{2}{1} \cdot e^{k}$$

i)
$$F(x) = e^x + \frac{1}{2}e^{-2x}$$

e)
$$F(x) = e \cdot x - 2 \cdot e^{-\frac{1}{2}x}$$
 f) $F(x) = -e^{-x}$
g) $F(x) = \frac{1}{2}e^{2x}$ h) $F(x) = \frac{2}{k} \cdot e^{kx}$
i) $F(x) = e^x + \frac{1}{2}e^{-2x}$ j) $F(x) = x - 2e^{-x} - \frac{1}{2}e^{-2x}$

16 a)
$$f'(x) = 4e^{2x} - e^{-x}$$
;

$$F(x) = x - e^{-x} + e^{2x}$$

b)
$$f'(x) = 2e^{-x}(3 - e^{-x})$$

16 a)
$$f'(x) = 4e^{2x} - e^{-x}$$
; $F(x) = x - e^{-x} + e^{2x}$
b) $f'(x) = 2e^{-x}(3 - e^{-x})$; $F(x) = 9x + 6e^{-x} - \frac{1}{2}e^{-2x}$

c)
$$f'(x) = 2(e^{2x} - e^{-2x})$$

c)
$$f'(x) = 2(e^{2x} - e^{-2x});$$
 $F(x) = 2x + \frac{1}{2}(e^{2x} - e^{-2x})$

d)
$$f'(x) = 2x + 4 \cdot e^{-4x}$$
; $F(x) = \frac{x^3}{3} + \frac{1}{4} \cdot e^{-4x}$

$$F(x) = \frac{x^3}{3} + \frac{1}{4} \cdot e^{-4x}$$

S. 261

23 a)
$$A_0(4) = 1 - 0,018 \approx 0,98$$

b)
$$A_0(b) = 1 - e^{-b}$$
; $\lim_{b \to \infty} A_0(b) = 1$

24 a)
$$J_{-10}(2) = \left[\frac{1}{2}e^{x}\right]_{-10}^{2} = 3,69451 \text{ approx}3,69$$

b) $J_{-10}(1) = \left[e^{(x+1)1} - e^{x}\right]_{-10}^{2} = 3,69451 \text{ approx}3,69$

b)
$$J_0(1) = [e^{t+1}]_0^1 = e^2 - e \approx 4,67$$

c)
$$J_{-1}(1)=2,084\approx 2,08$$
 d) $J_{0}(2)=1,33425\approx 1,33$ e) $J_{0}(1)=1,4323\approx 1,43$ f) $J_{-1}(0)=1,1752\approx 1,18$

d)
$$J_2(2) = 1.33425 \approx 1.33$$

e)
$$J_{-}(1) = 1.4323 \approx 1.43$$

f)
$$J_{-1}(0) = 1,1752 \approx 1,18$$

g)
$$J_{-2}(2) = 62,5798 \approx 62,58$$

g)
$$J_{-2}(2) = 62,5798 \approx 62,58$$
 h) $J_{0}(1) = \frac{1}{e} - \frac{1}{2} \approx -0,13$

S.263

e)
$$-3,00$$
 f) $0,88$ g) $-1,15$

4 a) 1 b) 2 c)
$$\frac{1}{2}$$
 d) 0 e) -2 f) -1
g) -2 h) $-\frac{1}{2}$ i) $-\frac{1}{3}$ j) $-\frac{3}{2}$ k) 1

$$g) -2$$

$$-\frac{1}{2}$$

$$-\frac{3}{2}$$

5 a) 2 b) 3 c) $\frac{1}{2}$ d) $\frac{1}{4}$ e) 8 f) $\frac{1}{9}$ g) $\frac{1}{2}$ h) 1 i) $\frac{1}{2}$ j) 1 k) 15

d)
$$\frac{1}{4}$$

6 a) 29,96

Ь) 0,08

c) 3,12

d) 1,00

e) 0,496631
$$\approx$$
 0,50 (Probe mit 0,5 gibt ln 0 \approx -5; exakt: $x = \frac{1}{2} - \frac{1}{2+5}$)

f)
$$2,0378\approx 2,04$$
 g) $1,55962\approx 1,56$
h) $-3,22070\approx -3,22$ i) $\ln 20\approx 2,995\approx 3,0$
j) $1,5108\approx 1,51$ k) $-0,57937\approx -0,58$

$$| (\ln \pi)^2 \approx 1,31041 \approx 1,31$$

Lösungen zu den Aufgaben Exponential- und Logarithmusfunktion (7.5.-10.5.)

S.264

7 a)
$$f'(x) = \frac{2}{x}$$

c) $f'(x) = \frac{1}{x}$

c)
$$f'(x) = \frac{x}{x}$$

e)
$$f'(x) = \frac{1}{x}$$

g)
$$f'(x) = \frac{x}{2x}$$

i) $f'(x) = -\frac{1}{2} \cdot \frac{1}{1-x}$

i)
$$f'(x) = -\frac{1}{2} \cdot \frac{1}{1-}$$

k)
$$f'(x) = \frac{3}{x}(\ln x)^2$$

m)
$$f'(x) = \frac{1}{2x \cdot \sqrt{\ln x}}$$

o)
$$f'(x) = \frac{1}{x} \cdot \cos(\ln x)$$

8 a)
$$f'(x) = 1 + \ln x$$

a)
$$f'(x) = 1 + \ln x$$

b) $f'(x) = x(2 \ln x + 1)$
c) $f'(x) = \frac{1}{\sqrt{x}} \left(\frac{1}{2} \ln x + 1\right) = \frac{\ln x + 2}{2\sqrt{x}}$
d) $f'(x) = \frac{1}{\sqrt{2x}} (\ln x + 2)$
e) $f'(x) = \frac{1}{2\sqrt{x}} (\ln 2x + 2)$
f) $f'(x) = \frac{-1}{x \cdot (\ln x)^2}$
g) $f'(x) = \frac{1}{x^2} (1 - \ln x)$
h) $f'(x) = \frac{(1 - x) \ln(1 - x) + 1 + x}{(1 - x)(\ln(1 - x))^2}$
i) $f'(t) = \frac{2(1 - \ln t)}{t^2}$
j) $h'(a) = \frac{2 - \ln 2a}{2a\sqrt{a}}$

e)
$$f'(x) = \frac{1}{2\sqrt{x}}(\ln 2x + 2)$$

g)
$$f'(x) = \frac{1}{x^2}(1 - \ln x)$$

i)
$$f'(t) = \frac{2(1 - \ln t)}{t^2}$$

b)
$$f'(x) = \frac{1}{x}$$

d)
$$f'(x) = \frac{1}{x} (x < 0)$$

f)
$$f'(x) = -\frac{1}{x}$$

h)
$$f'(x) = \frac{-6x}{1 - 3x^2}$$

j)
$$f'(x) = \frac{3}{2x}$$

1)
$$f'(x) = -\frac{1}{x(\ln x)^2}$$

b)
$$f'(x) = \frac{1}{x}$$

d) $f'(x) = \frac{1}{x}$ (x < 0)
f) $f'(x) = -\frac{1}{x}$
h) $f'(x) = \frac{-6x}{1 - 3x^2}$
j) $f'(x) = \frac{3}{2x}$
l) $f'(x) = -\frac{1}{x(\ln x)^2}$
n) $f'(x) = \frac{\cos x}{\sin x} = \frac{1}{\tan x}$

b)
$$f'(x) = x(2 \ln x + 1)$$

d)
$$f'(x) = \frac{1}{\sqrt{2x}}(\ln x + 2)$$

$$f'(x) = \frac{-1}{x \cdot (\ln x)^2}$$

h)
$$f'(x) = \frac{(1-x)\ln(1-x)+1+x}{(1-x)(\ln(1-x))^2}$$

$$j) \quad h'(a) = \frac{2 - \ln 2a}{2a\sqrt{a}}$$

9 a)
$$f'(x) = \frac{4}{x}$$

c)
$$f'(x) = -\frac{1}{x}$$

a)
$$f'(x) = \frac{4}{x}$$

c) $f'(x) = -\frac{1}{x}$
e) $f'(x) = \frac{1}{x(x+1)}$
g) $f'(x) = \frac{-2}{1-x}$

g)
$$f'(x) = \frac{-2}{1-x}$$

i)
$$f'(x) = \frac{1}{2x(1-x)}$$

b)
$$f'(x) = \frac{1}{x}$$

d)
$$f'(x) = -\frac{2}{x}$$

f)
$$f'(x) = \frac{2}{1-x}$$

b)
$$f'(x) = \frac{1}{x}$$

d) $f'(x) = -\frac{2}{x}$
f) $f'(x) = \frac{2}{1 - x^2}$
h) $f'(x) = \frac{1 - 2x}{2x(1 + 2x)}$
j) $f'(t) = -\frac{1}{2t + 1}$

j)
$$f'(t) = -\frac{1}{2t+1}$$

10 a)
$$F(x) = 2 \ln |x|$$
; $x \in \mathbb{R} \setminus \{0\}$

b)
$$F(x) = \frac{2}{3} \ln |x|$$
; $x \in \mathbb{R} \setminus \{0\}$

c)
$$F(x) = \frac{x^2}{2} - \ln |x|; x \in \mathbb{R} \setminus \{0\}$$

d) $F(x) = \ln |x - 1|; x \in \mathbb{R} \setminus \{1\}$
e) $F(x) = \frac{1}{|1 - x|}; x \in \mathbb{R} \setminus \{1\}$

d)
$$F(x) = \ln |x - 1|; x \in \mathbb{R} \setminus \{1\}$$

e)
$$F(x) = \frac{1}{|1-x|}; x \in \mathbb{R} \setminus \{1\}$$

f)
$$F(x) = \frac{1}{2} \ln |2x - 1|; x \in \mathbb{R} \setminus \left\{\frac{1}{2}\right\}$$

g)
$$F(x) = -\frac{3}{2} \ln |1 - 2x|; x \in \mathbb{R} \setminus \left\{ \frac{1}{2} \right\}$$

h)
$$F(x) = \frac{1}{3} \ln |2 + 3x|; x \in \mathbb{R} \setminus \left\{-\frac{2}{3}\right\}$$

i)
$$F(t) = \frac{4}{3} \ln |3t + \sqrt{2}|; x \in \mathbb{R} \setminus \left\{ -\frac{1}{3}\sqrt{2} \right\}$$

j)
$$G(s) = -2 \ln \left| 1 - \frac{s}{2} \right|$$
; $x \in \mathbb{R} \setminus \{2\}$

Lösungen zu den Aufgaben Exponential- und Logarithmusfunktion (7.5.-10.5.)

S. 264

$$\begin{array}{ll} \textbf{11} & \textbf{a)} & f(\textbf{x}) = \frac{2\textbf{x} + 2 - 1}{\textbf{x} + 1} = \frac{2(\textbf{x} + 1)}{\textbf{x} + 1} - \frac{1}{\textbf{x} + 1} = 2 - \frac{1}{\textbf{x} + 1}; \quad \textbf{x} \neq -1; \\ & F(\textbf{x}) = 2\textbf{x} - \ln|\textbf{x} + 1|; \quad \textbf{x} \in \mathbb{R} \setminus \{-1\} \\ & \textbf{b)} & f(\textbf{x}) = 1 + \frac{1}{1 - \textbf{x}}; \quad \textbf{x} \neq 1; \quad F(\textbf{x}) = \textbf{x} - \ln|\textbf{1} - \textbf{x}|; \quad \textbf{x} \in \mathbb{R} \setminus \{1\} \\ & \textbf{c)} & f(\textbf{x}) = \textbf{x} + \frac{1}{\textbf{x} + 1}; \quad \textbf{x} \neq -1; \quad F(\textbf{x}) = \frac{\textbf{x}^2}{2} + \ln|\textbf{x} + 1|; \quad \textbf{x} \in \mathbb{R} \setminus \{-1\} \end{array}$$

b)
$$f(x) = 1 + \frac{1}{1-x}$$
; $x \ne 1$; $F(x) = x - \ln|1-x|$; $x \in \mathbb{R} \setminus \{1\}$

c)
$$f(x) = x + \frac{1}{x+1}$$
; $x \neq -1$; $F(x) = \frac{x^2}{2} + \ln|x+1|$; $x \in \mathbb{R} \setminus \{-1\}$

d)
$$f(x) = x^2 + 2x + 4 + \frac{9}{x-2}$$
; $x \neq 2$; $F(x) = \frac{x^3}{3} + x^2 + 4x + 9 \ln|x-2|$; $x \neq 2$

e)
$$f(x) = \frac{1}{2} - \frac{3}{4x + 2}$$
; $F(x) = \frac{1}{2}x - \frac{3}{4} \ln|4x + 2|$; $x \neq -\frac{1}{2}$

S. 280 / 281

12 a)
$$F(x) = \frac{1}{2}e^{x^2}$$
 b) $F(x) = -\frac{1}{2}e^{-x^2}$ c) $F(x) = -\frac{1}{6}e^{1-3x^2}$

d)
$$F(x) = 2e^{\sqrt{x}}$$
 e) $F(x) = -e^{\frac{1}{x}}$

13 a)
$$F(x) = \frac{1}{2}(\ln x)^2$$
 b) $F(x) = \frac{1}{3}(\ln x)^3$ c) $F(x) = \frac{2}{3}(\ln x)^{\frac{3}{2}}$ d) $F(x) = \ln |\ln x|$ e) $F(x) = \frac{1}{2}(\ln 2x)^2$

d)
$$F(x) = \ln |\ln x|$$
 e) $F(x) = \frac{1}{2}(\ln 2x)$

c)
$$F(x) = -\frac{2}{\pi^2} \cos\left(\frac{\pi}{2}x\right)^2$$
 d) $\sin\left(\frac{\pi}{2} - t^2\right) = \cos t^2$; $F(t)$
e) $F(x) = 2 \sin \sqrt{x}$

a)
$$F(x) = \frac{1}{2} \sin^2 x$$
 b) $F(x) = \frac{1}{2} \sin^3 x$

15 a)
$$F(x) = \frac{1}{2} \sin^2 x$$
 b) $F(x) = \frac{1}{3} \sin^3 x$ c) $F(x) = \ln |\sin x|$ d) $F(x) = -\ln |\cos x|$

16 a)
$$F(x) = -\frac{1}{2}e^{-2x} - \frac{1}{3}e^{-3x}$$
 b) $F(x) = \ln(1 + e^x)$ c) $F(x) = -\ln(1 + e^{-2x})$ d) $F(x) = \ln(e^x + e^{-x})$

17 a)
$$F(x) = 2 \ln(e^x + 1) - e^{-x} - x$$
 (Setze $e^{-x} = z$; dann $z + 1 = u$)

b)
$$F(x) = 1 - \ln x - 2 \ln(1 - \ln x)$$

c)
$$F(x) = -\cos x + \frac{1}{3}\cos^3 x$$

d)
$$F(x) = \frac{1}{2}x - \frac{1}{2}\sin x \cdot \cos x$$

S. 265

21 a) 2,67 b) 1,0968
$$\approx$$
 1,10 c) 2,17 d) 5,05 e) 12,53 f) 22,46 g) 1,58 h) 1,46497 \approx 1,46 i) -0,11 j) 1,18 k) 0,78 l) $\frac{1}{4}$

24 a)
$$f(x) = e^{x - \ln 4}$$
; $f'(x) = \ln 4 \cdot e^{x - \ln 4} = 4^x \cdot \ln 4$; $F(x) = \frac{4^x}{\ln 4}$

b)
$$f(x) = e^{x \cdot (\ln 2 - \ln 3)}$$
; $f'(x) = \left(\frac{2}{3}\right)^x \cdot (\ln 2 - \ln 3)$; $F(x) = \frac{\left(\frac{2}{3}\right)^x}{\ln 2 - \ln 3}$

c)
$$f(x) = e^{x + \ln 2.5}$$
; $f'(x) = 2.5^x + \ln 2.5$; $F(x) = \frac{2.5^x}{\ln 2.5}$

h)
$$f'(t) = -2 \cdot 3^{1-2t} \cdot \ln 3$$
; $F(t) = \frac{3^{1-2t}}{-2 \cdot \ln 3}$

j)
$$f'(x) = -1.5 \cdot 2^{\frac{3}{2}x} \cdot \ln 2$$
; $F(x) = \frac{2^{-\frac{3}{2}x}}{-1.5 \cdot \ln 2}$