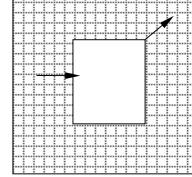

1. Ein schmales Lichtbündel trifft auf einen Winkelspiegel (siehe Skizze) und wird reflektiert.


- **1.1** Übernimm die Skizze. Zeichne den weiteren Strahlenverlauf bei einem Einfallswinkel von 60°.
- **1.2** Kennzeichne einen Einfallswinkel und den zugehörigen Reflexionswinkel.
- **1.3** Welche Lage nehmen der einfallende und der aus dem Winkelspiegel austretende Strahl zueinander ein?
- **2.** Ein schmales einfarbiges Lichtbündel trifft unter einem Einfallswinkel $\alpha_1 = 40^{\circ}$ auf eine Platte aus Polystyrol.

- **2.1** Berechne den Brechungswinkel beim Übergang des Lichtes in die Platte.
- **2.2** Zeichne den vollständigen Strahlenverlauf einschließlich des Austritts aus der Platte.
- **2.3** Wie groß muss der Einfallswinkel α_1 gewählt werden damit das Licht an den Oberflächen nicht gebrochen wird?
- 3. Vor einer Sammellinse mit einer Brennweite f = 3 cm steht in einer Entfernung von 7 cm ein 1,5 cm hoher Gegenstand auf der optischen Achse.
 (Als Gegenstand soll ein Pfeil gezeichnet werden, dessen Fußpunkt sich auf der optischen Achse befindet.)
- **3.1** Konstruiere das Bild des Gegenstandes.
- **3.2** Wie weit ist das Bild von der Linse entfernt?
- **3.3** Vergleiche Bild- und Gegenstandsgröße. Bei welchem optischen Gerät wird diese Art der Bildentstehung genutzt?

4. Einfarbiges Licht tritt in der angegebenen Weise in einen schwarzen Kasten, in dem sich ein optisches Bauteil befindet, ein und wieder heraus.

- **4.1** Nenne zwei verschiedene optische Bauteile, die sich im Inneren des Kastens befinden können.
- **4.2** Übernimm die Skizze. Zeichne einen möglichen Strahlenverlauf und das Bauteil ein.

